

sebadorn.de

		
			
				
				Home
			
		
	
			
				[image: Profile picture]
				Über mich
			
		
	
			
				
				GitHub
			
		
	
			
				[image: Mastodon icon]
				Mastodon
			
		
	
			
				
				RSS-Feed
			
		

	
		
		
	

	

	

	
		Dead Cells: PS4 controller support on Linux

		
			11.08.2018
		

	

	Dead Cells is a game, it is really good, and it is available for Linux. However right after installation (version 1.0 from GOG) it did not recognize my PS4 controller. It could not be a problem with the controller itself or Linux in general, because the DS4 worked with other applications – for example it showed up perfectly fine in jstest-gtk (0.1.0).

After some research I came across this reddit post. Dead Cells uses the SDL library, so maybe that's it. I followed the instructions and built and ran sdl2-jstest. The output should contain an entry like this for the DS4 (2nd gen):

Joystick Name: 'Sony Interactive Entertainment Wireless Controller'
Joystick GUID: 030000004c050000cc09000011810000
Joystick Number: 0
Number of Axes: 6
Number of Buttons: 13
Number of Hats: 1
Number of Balls: 0
GameControllerConfig:
 Name: 'PS4 Controller'
 Mapping: '030000004c050000cc09000011810000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,'

… or like this for the DS4 (1st gen):

Joystick Name: 'Sony Computer Entertainment Wireless Controller'
Joystick GUID: 030000004c050000c405000011810000
Joystick Number: 0
Number of Axes: 6
Number of Buttons: 13
Number of Hats: 1
Number of Balls: 0
GameControllerConfig:
 Name: 'PS4 Controller'
 Mapping: '030000004c050000c405000011810000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,'

Take the value behind Mapping and add a line in your /etc/environment file like this:

SDL_GAMECONTROLLERCONFIG='030000004c050000cc09000011810000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,'

After the next reboot everything should be working. Or if you want to test it right away without reboot, then you can just add it to the start script of the game. Assuming you used the standard installation path from the GOG installer, the file is located at ~/GOG Games/Dead Cells/start.sh. Change the file so it now begins with:

#!/bin/bash
GOG.com (www.gog.com)
Game

export SDL_GAMECONTROLLERCONFIG='030000004c050000cc09000011810000,PS4 Controller,a:b0,b:b1,back:b8,dpdown:h0.4,dpleft:h0.8,dpright:h0.2,dpup:h0.1,guide:b10,leftshoulder:b4,leftstick:b11,lefttrigger:a2,leftx:a0,lefty:a1,rightshoulder:b5,rightstick:b12,righttrigger:a5,rightx:a3,righty:a4,start:b9,x:b3,y:b2,platform:Linux,'

That's what worked for me. If it still doesn't for you, try adding some udev rules as described in my article Using NW.js to communicate with a DS4 controller.

	
		
	ControllerDead CellsDS4LinuxSDL
	

	

	
		JavaScript source protection with NW.js

		
			26.05.2018
		

	

	You can minify and uglify JavaScript files, but technically the source code of your distributed NW.js application is still readable. But NW.js also provides the means to compile JavaScript to a binary file and then load it as part of the application. The command line tool nwjc to create the binary file is included in the SDK version.

Assuming you have a JavaScript file js/private.js:

'use strict';

function secretFunction(foo) {
 return foo * 4;
};

Then you can compile it like this to a file js/private.bin:

$./nwjs-sdk-v0.30.5-linux-x64/nwjc js/private.js js/private.bin

Internally the tool uses the V8 snapshot feature, which means the versions have to match. A binary file created with NW.js 0.30 can only be loaded by 0.30. Binary files also do not work cross-platform. For each platform it is necessary to compile its own binary file with the SDK for the same platform.

To then load the binary file in your application, it works like this:

let win = nw.Window.get();
win.evalNWBin(null, 'js/private.bin');

let value = secretFunction(4); // returns 16

Note however that the loading is per window. If you open another window in your application, the file has to be loaded there again.

Using the DevTools you can of course find the functions and variables which have been loaded from the file. The function implementation however is protected:

> String(secretFunction)
< "function secretFunction() { [native code] }"

DevTools issues

Update 2018-12-15: Since NW.js 0.34 this issue seems to be fixed. Loading binary files works even with the DevTools open.

There is an issue with loading binary files and the DevTools. Basically you cannot have the DevTools open and then load the file. There will be no error, but the contents will not be available. This is a known issue.

My temporary solution is to just close the DevTools. But just closing them right before is not enough, you also have to use a timeout before loading the file:

let win = nw.Window.get();

// Function is only available in the SDK build.
if(typeof win.closeDevTools === 'function') {
 win.closeDevTools();
}

setTimeout(() => {
 win.evalNWBin(null, 'js/private.bin');
}, 500);

But why not check first if the DevTools are open? Then you could open them again afterwards. According to the API documentation there is win.isDevToolsOpen(). But it exists only in the documentation. Using the SDK build there is de facto no such function. This too is a known issue.

Wine for Windows

I successfully used Wine 3 to compile a binary file for the Windows version of a NW.js application and then load it there. So if you are on Linux or macOS you will not need Windows for your build process. You should of course still test your application to make sure it works on all targeted platforms.

	
		
	compilerJavaScriptNW.jsnwjcV8Wine
	

	

	
		Using NW.js to communicate with a DS4 controller

		
			07.12.2017
		

	

	[image: DS4 green light]

NW.js still provides the Chrome Apps API which has been removed from Chrome, but not ChromeOS. This will allow us to access in a platform-independant manner devices which are connected with the PC per USB.

Without this API, a 3rd party Node.js module like node-hid could be used. This will however come with platform-dependant libraries and will have to be updated or rebuild each time the Node.js version changes.

This article concentrates on sending data to the controller. However it is also possible to retrieve data like pressed buttons using the established connection. Aside from using chrome.hid there is also the Gamepad API for read-only access.

Identifying the controller

First we need a way to identify the DS4. Devices come with a vendor Id and product Id. According to the Gentoo Wiki they are as follows:

	Device	Vendor Id	Product Id
	DS4 (1st gen)	hex 054C / dec 1356	hex 05C4 / dec 1476
	DS4 (2nd gen)	hex 054C / dec 1356	hex 09CC / dec 2508

Having tested with both devices, I can also confirm the Ids.

Get the device

For all communication with the device, we will use the chrome.hid API. First we define a filter using the vendor and product Id, and then query the available devices:

var filter = {
 filter: [
 { vendorId: 1356, productId: 1476 },
 { vendorId: 1356, productId: 2508 }
]
};

chrome.hid.getDevices(filter, (devices) => {
 // Error handling.
 if(chrome.runtime.lastError) {
 console.error(chrome.runtime.lastError);
 return;
 }
 if(!devices) {
 return;
 }

 var device = devices[0];
 // Next: Connect to the device.
};

	Read more

	
		
	APIchromecontrollerDS4DualShockgamepadHIDJavaScriptLEDNW.jsrumbleudevUSB
	

	

	
		Android file transfer over MTP is a nightmare

		
			02.09.2016
		

	

	Update, 30.09.2017: After trying it again today, I found none of the problems listed below anymore. It's fast and painless. So that's good!

It was bad before, but after the upgrade to Ubuntu 16.04 – which may or may not be related, it probably is – it went from bad to downright painful. Connecting device and PC works fine. What does not is …

	It is slow. Opening the SD card directory with my music takes several seconds.
	After deleting files the amount of available space is not updated. I free space for new files but get a warning telling me there isn't enough free space. At least I have the option to try and copy the files anyway, ignoring the warning.
	The new problem: After just one transfer, I cannot access the device per MTP anymore. No content is listed for the music directory anymore. Seemingly trying to load the contents it ultimately fails to do so. Unplugging does not help. Restarting the PC does not help. Restarting the device does not help. Using a different PC with macOS does not help. What helps is … using the Android file manager and deleting a file. Something is seriously broken here.

In early Android versions the device was mounted as USB mass storage. Those were the good, old days. At least they had understandable reasons for replacing it.

[image: Nautilus FTP]

An alternative to using MTP is FTP. I used the app FTPServer to start an FTP server on my device while connected to my home WiFi. In the FTPServer settings I chose wlan0 as standard interface and pointed the server root to the directory /mnt/extSdCard. Now I can use FileZilla or Nautilus (see image above) to connect to the server from my PC. The transfer speed is of course a little limited, but the file transfer itself? – works just fine.

While I'm happy to have found a good alternative to the nightmare that is MTP, I find this whole situation quite ridiculous. At some point I'd like to upgrade from my Galaxy S3. While I'm not considering iOS or Windows Phone, I'm also disappointed of Android. Hopefully the Ubuntu phones take of.

	
		
	Androidfile transferFTPMTPUbuntu
	

	

	
		Improvements after Mozilla’s Observatory results

		
			27.08.2016
		

	

	Mozilla made their Observatory service public, which lets you check the security of sites. A first run resulted in an F for sebadorn.de. Following some of the suggestions I could improve that to a B-.

1. Redirect HTTP to HTTPS

Thanks to Let’s Encrypt I already offered HTTPS, but I didn't enforce it. Now visitors to http://sebadorn.de are redirected to https://sebadorn.de. I did so by adding the following rule to my .htaccess file:

<IfModule mod_rewrite.c>
	RewriteEngine On
	RewriteCond %{HTTP_HOST} ^sebadorn\.de [NC]
	RewriteCond %{SERVER_PORT} 80
	RewriteRule ^(.*)$ https://sebadorn.de/$1 [R,L]
</IfModule>

2. Add some more headers

<IfModule mod_headers.c>
	Header always edit Set-Cookie (.*) "$1; HttpOnly; Secure"
	Header set Content-Security-Policy "frame-ancestors 'self'"
	Header set X-Content-Type-Options "nosniff"
	Header set X-Frame-Options "SAMEORIGIN"
	Header set X-XSS-Protection "1; mode=block"
</IfModule>

	Set-Cookie
	Cookies about to be set received additional directives: HttpOnly and Secure. HttpOnly disallows cookies being read by JavaScript and Secure enforces an HTTPS connection. (Source)
	X-Content-Type-Options
	Setting this header to nosniff tells browsers not to try and guess the MIME type of contents, which potentially prevents XSS attacks. (Source)
	X-Frame-Options
	Setting this header to SAMEORIGIN or DENY prevents other pages from displaying the site in a frame which prevents clickjacking. (Source)
	X-XSS-Protection
	Setting this header to 1; mode=block tells browsers to try and detect XSS attacks and in this case stop loading the page. (Source)

	
		
	.htaccessheadersMozillaObservatorysecurity
	

	«123456789»

	
		Kategorien

			Anime & Manga
	Game Dev
	Informatics
	Music
	Photography
	Studenthood
	Uncategorized

	

	
		Seiten

			Über
	Datenschutz
	Impressum

	

	
		Benchmark

			
				Sec.0.0069
			
	
				MB (peak)0.4221
			
	
				MB (final)0.3901
			
	
				DB queries5
			

	

	

